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Anisotropic Voter Model 

M .  A. S a n t o s  t and S. T e i x e i r a  l' 2 
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A majority vote model subject to anisotropic voting rules is studied in two 
dimensions using a first-order mean-field approximation and Monte Carlo 
simulations. The critical behavior is consistent with the 2D lsing universality 
class. 
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1. I N T R O D U C T I O N  

Polling models are probabilistic lattice models for the evolution of opinion 
(yes or no) on some issue. They are useful toy models for the study of non- 
equilibrium systems, since they display nontrivial phase transitions between 
stationary phases but have rather simple stochastic microscopically irre- 
versible rules. (1"2) 

Grinstein et aL (3) argued, back in 1985, that stochastic spin-flip models 
with two states per site and updating rules of a short-range nature with 
up/down symmetry should belong to the (kinetic) Ising model universality 
class. Their argument rests on the stability of the dynamic Ising fixed point 
in d =  4 - e  dimensions with respect to perturbations preserving both the 
spin inversion and the lattice symmetries. This hypothesis has received 
extensive confirmation from MC simulations 14-g'~9,16) as well as from 
analytic calculations. (1~ The models investigated include Ising models 
with a competition of two (or three (~9)) Glauber-like rates at different 
temperatures "~ or a combination of spin-flip and spin-exchange 
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dynamics (2~ and other types of transition rules with the restrictions men- 
tioned aboveJ 8"4) Ising behavior has also been found in systems with three 
states per site under certain kinds of rules. (9~ The critical behavior of a two- 
dimensional nonequilibrium model with two-valued bonds and different 
bond strengths in the x and y directions has been studied by B16te et aL t16) 
with no clear evidence of a distinct universality class. 

Another approach to the study of stochastic nonequilibrium systems 
was taken by Domany, t~7) who established a mapping of some d-dimensional 
CA to (d+  1)-dimensional equilibrium models with constrained coupling 
constants. The critical behavior of the former is related to the critical 
behavior of the latter on a disorder variety; however, due to the special 
nature of the transition of the equilibrium model, this information is usually 
not very illuminating. (2~' ts) 

In the present work, we investigate the robustness of the Ising behavior 
with respect to anisotropy by considering an anisotropic version of one of 
the simplest nonequilibrium models, the majority vote model. 

2. M O D E L  A N D  CALCULATIONS 

The (isotropic) majority vote model is defined by a set of "spin" 
variables {ai} taking value + 1 or - 1 on the sites of a d-dimensional hyper- 
cubic lattice, evolving by single-spin-flip dynamics with a flip probability w~ 
which depends on the state of nearest neighbors ~r = {tri+ a}: 

I , )  
" , 6  l - J  

where S(x)= sign(x) if x ~ 0 and S(x)= 0 if x = 0. The noise parameter q 
is the probability of aligning antiparallel to (disagreeing with) the majority 
of neighbors. In one dimension the model is exactly solvable: the stationary 
state is paramagnetic (P) for 0 < q <  1, ferromagnetic (F) for q = 0 ,  and 
antiferromagnetic (AF) for q =  1. In two dimensions MC calculations (4~ 
have found an F phase for O<<.q<<.qc (with qc=0.075 for a square lattice), 
an AF phase for 1 -q , .  ~< q ~< 1, and a P state for q,. < q < 1 - q c ;  the critical 
behavior is 2D Ising. 

We consider now anisotropic flip rates, namely 

w,(~) = xw] (o) -4- (1 - x) w~(o-) (2) 

where w~(tr) and w~(tr) are, respectively, the 1D and 2D versions of (1) and 
x is the anisotropy parameter (0~<x~< 1). Now, with probability x the 
voter only looks at left and right neighbors and is influenced by four 
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neighbors with probability 1 - x .  Rates (2) are expected to reduce the F 
phase to O<~q<~qc(x) with qc(0) = 0.075 and qc(1)=0. Since the AF phase 
follows by symmetry, we will consider only values of q less than 1/2. 

The time evolution of expectation values is given by 

d<0",) 
- - 2 < 0 " , w , ( 0 " ) 7  (3 )  

dt 

d(0"iaj) = -2(0"iay(Wi(0") + %(a))  ) (4) 
dt 

We looked for stationary solutions of these equations in two dimensions 
using a mean-field approximation (pair approximation); this study is 
complemented by a numerical (MC) simulation. 

2.1. Pair A p p r o x i m a t i o n  

In this approximation we need only the single- and two-particle 
probabilities, which can, in turn, be written as functions of the magnetiza- 
tion m = ( a o )  and the nearest-neighbor pair correlations r t = (0"00"1) and 
r2 = ( a oa 2 )  (for horizontal and vertical bonds, respectively). The proba- 
bility of a cluster formed by a central spin ao and its four neighbors is then 

4 P(a0,  o-s) 
P(ao, aj ,  o'2, 0"3, a4) = P(a~ 1--[--1 

P(0"0) 

where P(1, 1 ) = ( l + 2 m + r ~ ) / 4 ,  P ( - 1 , - 1 ) = ( l - 2 m + r k ) / 4  and P ( 1 , - 1 )  
= P (  - 1, 1 ) = (1 - rk)/4 with rk = rl (r2) for horizontal (vertical) bonds and 

Fig. 1. 
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Phase diagram obtained by a pair approximation and by MC simulation, showing 
the paramagnetic (P) and ferromagnetic (F) states. 
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P(1 ) =  (1 + m)/2  and P ( -  1)= ( 1 -  m)/2  as usual. The stationary solutions 
of Eqs. (3) and (4) in the pair approximation are of the form 

m = m F l ( x ,  q; r l ,  rz) + O(m 3) 
rl = F2(x,  q; r l ,  r2) + O(m 2) 

r 2 = F3(x  , q; r l ,  rz) -]- O(m 2) 

The F/P transition line, qc(x),  is given by F~ = 1 with r~ = F 2  and 
r2 = F3 and is plotted in Fig. 1. 

2.2.  M o n t e  Car lo  C a l c u l a t i o n s  

Monte Carlo simulations were performed on a square lattice of L 2 
spins (L ~< 92) with periodic boundary conditions and random initial con- 
figurations. The simulation procedure and data analysis are similar to the 
ones described in refs. 4, 8, and 9. For given values of x and q, a set of 
configurations were generated by repeatedly choosing a spin at random 
and flipping with probability given by (2). Up to 300,000 MCS were taken 
(1 MCS equals L 2 spin-flip attempts); as we were interested in steady-state 
expectation values, a variable number of initial MCS (typically 150,000) 
were discarded prior to the averaging procedure. 

For several system sizes, the magnetization M L = ( I m l ) = ( 1 / L  2) 
( I Z i a i l ) ,  fourth-order cumulant U L - - l - - ( m n ) / 3 ( m 2 )  2, and suscep- 
tibility ZL = L: ( (m ' - )  -- ( Iml)2)  were computed as a function of q for given 
anisotropy x (Figs. 2 and 3). The (infinite) system transition point qc(x)  
shown in Fig. 1 was obtained from the abscissa of the intersection of the 
curves UL(q) for various sizes L. We found that the value U* = UL(qc) = 
0.61 +0.01 is the same as in the equilibrium isotropic case. ~13) 

In order to investigate the critical behavior, we have studied more 
carefully the vicinity of the critical point and performed finite-size scaling 
analysis t14'151 for anisotropy values x = 0 and x = 0.2. The size dependences 
of ZL and M L at the critical point 

ZL(qc) = AL~'/" 

ML(q, .)  = BL-P / "  

yield the exponents 7/v and fl/v; the maximum value of the susceptibility 
also scales as L ~'/'. The log-log plots of Figs. 4 and 5 confirm scaling with 
exponents consistent with Onsager's values 7/v = 1.75 and fl/v = 0.125. On 
the other hand, the value for which ZL has a maximum, qc(L),  is expected 
to be a linear function of L-1/~, 

qc(L)  = q~ + C L -  t/,, 



Anisotropie Voter Model 967 
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Fig. 4. Log-log plots of the maximum value of the susceptibility, zL(max), and of the 
susceptibility at the critical point, ZL(qr versus L for anisotropy x=0 .2 .  The slopes of the 
best fits yield 7/v = 1.74 _+ 0.09. 
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Fig. 5. (a) Log- log  plot  of the magnet iza t ion  at  the critical point  versus system size for 
x = 0.2. The slope of the best fit yields fl/v = 0.124. ( b ) T h e  same, for the isotropic (x  = 0) case. 
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Fig. 6. Value of q at xL(max)  versus L -  ~/" for v = 0.97 and x = 0.2; the intersection with the 
vertical axis gives the critical point  qc(0 .2)= 0.0576 + 0.0002. 
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Data-col lapsing plot: ML(q) L p/' as a function of log(]q--  q~[ L ~/') for q~ = 0.0578, 
fl/v = 0.124, v = 0.96; anisot ropy x = 0.2. 
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Figure 6 shows that for x = 0.2 the best fit to a straight line is obtained 
taking v = 0.97; the intersection with the vertical axis gives an independent 
estimate of the critical value which agrees with the value qc=0.0578 
obtained from the fourth-order cumulant. Finally we have performed a 
data-collapse plot of ML(q)L ~/~ versus log( Iq-qc l  L~/V) (Fig. 7) obtaining 
a reasonable fit over two decades of the horizontal variable when the 
above-mentioned values of exponents are used. For higher values of the 
anisotropy the critical region becomes rather narrow and the order 
parameter changes rapidly near the transition, making it very difficult to 
get good statistics. We have, however, checked that for x = 0.6 a reasonable 
fit to the data is obtained using Onsager exponents in the scaling analysis. 

3. D I S C U S S I O N  A N D  C O N C L U S I O N  

We have studied a kind of dimensional crossover in stationary non- 
equilibrium phases of a majority vote model induced by anisotropic 
dynamic rules. The general behavior determined by Eqs. (1) and (2) is 
easily understood: for x =  1 each spin receives only two inputs from 
neighbors and that is not enough to sustain a ferromagnetic phase over a 
finite range of parameter space~21); as soon as x :/: 1, the spin has nonzero 
probability of getting four inputs and the system may reach a stationary 
state with 2D ferromagnetic order. The situation is analogous (but not 
equivalent !) to a square lattice Ising model with a coupling Jx = J in the x 
direction and bond dilution (Jiy = J, 0 with probability p, 1 -  p) in the y 
axis. In this case, a crossover from 1D to 2D is induced by the aniso- 
tropic dilution and the 2D Ising fixed point is stable with respect to this 
perturbation.~22J 

Our MC study reproduces the results of ref. 4 when x = 0, namely 2D 
Ising critical behavior. Evidence for the same universality class is also 
presented for the anisotropic x = 0.2 case and qualitatively also for higher 
values of x, although it proved increasingly difficult to get reliable data as 
one approaches the first-order critical point at q =  1, x =  1. Our results 
indicate that 2D Ising critical behavior is stable with respect to this kind 
of anisotropy, therefore supporting universality for this type of non- 
equilibrium system. A similar conclusion was reached by B16te and 
coworkers ~6~ in their study of a nonequilibrium model with a preferred 
direction. 
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